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ABSTRACT

The discrete finite Fourier transform can be
regarded as a matrix operation, since each clement
of one member of the pair is a linear combination of all |
the elements of the other member. The N-by-N cyclo-
tomic matrix (W)jk = N7 exp[=-2mijk/N] which per-
forms the transform is unitary and has eigenvalues
A =% 1 and * i. Clearly the eigenvectors of W are
those fuactions which are their own finite Fourier
transform multiplied by + 1 or * i, One class of such
functions are aliased Hermite functions, which are

related to the theta functions,

We discuss analytically some curious properties of
these functions, which were suggested by numerical calcu-

lations of the eigenvectors.

We demonstrate a remarkably simple relation
between a periodic function of a discrete variable
and its discrete finite Fourier transform, namely
that the absolute values of their expansion coeffi-
cients in these eigenvectors are the same. We
suggest a canonical form for such functions (with

respect to the finite Fourier transform) in which the

transform can be done by inspection.
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1. Introduction

Popularization of the fast Fourier transform
algorithm by Cooley and others (for example, Cooley
et al., 1967) has caused renewed interest in the
theory of the discrete finite Fourier transform,
which was neglected during the years
when statisticians preferred to calculate the spectra
of digital time series via mean lagged products. In
this paper we discuss some properties of the eigen-
vectors of the matrix that performs the discrete
finite Fourier transform.

For continuous time we have the Fourier trans-
form pair:

[+ o]

X(f) = J x(t) e 2mift 4

% (L) = j X(f) e*2mift 4¢

provided these integrals exist. The corresponding

discrete finite Fourier transform pair is:

N1 y
X N-s Z - e-2n1Jk/N
k j=0 J




for which the completeness-closure relation is:

N-1

N1 ,ZO exp[2nij(k - k')/N] = cﬁ, (1.5)
J=
where
_ 1 when k = k' (mod N)
65, = { (1.6)
0 otherwise

The relation between the discrete finite Fourier
transform and the continuous-time Fourier transform
is (see, for example, Cooley et al.,, 1967) that if
x(t) and X(f) are a continuous-time Fourier transform

pair, then xp(At) and Xp(kAf) are a discrete finite

Fourier transform pair, where

0

TN ] x(jat + mNat) (1.7)

m=-

xp(jat)

Xp(kAf) X(kaf + mNAf) (1.8)

(]
ne-18

m=-ow
where N is the number of sample points in x and X, ‘'and
T = NAt. The form of (1.7) and (1.8) is obviously due
to the aliasing in both time and frequency which

occurs when x(t) and X(f) are sampled.

We define a matrix W:

(W) i = N7% ¢ 2mijk/N (1.9)




in order to write (1.3) and (1.4) morc compactly in

matrix notation:

X = Wx

~

n
=
-~

X
where X and X are vectors whose elements are the
sample values of the data and the transform respectively,
and the dagger denotes Hermitian conjugation. W is

clearly unitary, and it satisfies the equation

wh = 1
so that its eigenvalues are A = + 1 and + i. The problem
of determining the multiplicity of these eigenvalues is
equivalent to the problem of evaluating the trace of W,
i.e., the Gaussian sum

1 N 1
S(1,N) = N7 § exp(2mik?/N) = N% tr(w)

the value of which is well known (Erdelyi et al., 1955,
section 17.68).
Carlitz (1959)showed that a multiplicity rule for the

eigenvalues can dbe derived from the fact that the charac-

teristic polynomial of W is:

(1.10a)

(1.10b)

(1.11)

|
i
|




£ = (A - D20+ i)+ 104 - 1)¥N-T when N0 (mod 4)
; £ = (- 1 f - pEN-D Nz1 (mod 4)
£(0) = (08 - pEt - iiN-2) Nz2 (mod 4)
£0) = (0 + (A" - ot - nF0-3) N=3 (mod 4)

A simple way to see the multiplicity is to count

the occurrences of each of the fourth roots of unity
'arc'nd the unit circle in the following way: For N
odd, start with +1 and step around counterclockwise,
counting each root in turn, up to a total of N of
them - e.g., for N = § the eigenvalues are 1, -i, -1,

+i, 1. For N even, however, the last occurrence of

ior -i is skipped - e.g., for N = 6 the eigenvalues

are 1, -i, -1, +i, 1, -1.




2, The Eigenvectors of W

It is clear that the eigenvectors of W are those
functions of a discrete variable which are equal to
their own discrete finite Fourier transforms multiplied
by + 1 or + i. We can get a set of these from the

relationship (see Magnus et al., 1966):

o - 2 - . _ el
J_m ("™ 1 [(2m)Ft]de 2T e = 17K (o7 uk[(zn)*f]} (2.1)

where Hyp(x) is the k'th Hermite polynomial:

H (x) = (-1)K exp(x?) d¥[exp(-x?)1/dx¥ (2.2)
That is,

- tz
u(t) = et H [(2n)7t] (2.3)

is a solution of the singular integral equation:

J u(t) e 2 g o ) (2.4)

with A = + 1, + i,

The functions (2.3) do not exhaust the solutions
of (2.4), since there are infinitely many solutions
for A = + 1: for example, u(t) = sech(nt) satisfies

(2.4) with x =1, and in fact, if x(t) and X(f) are

any Fourier transform pair, then




o

u(t) = x(t) + aX(t)

is a solution of equation (2.4), with A = o = + 1 if

x(t) = x(-t) and with A = -a = + i if x(t) = -x(t).

is a solution of (2.4) with X = + 1.
From equations (1.7) and (1.8) we see that
eigenvectors of W which correspond to the functions

2.3) are:

@ . 2
u () = 3 "GNy rn/m% e

m=se-wo

where uy (j) denotes the j'th element of the k'th
eigenvector. In deriving (2.6) we made use of the

fact that if xp(jAt) is to be proportional to Xp(kaAf),
then At = Af = N™1, Cooley et al. (1967) state

(2.6) omitting the Hermite function. Since Ho(t) = 1,
(2,6) is a generalization of their result.

These functions of j, k, and N are clearly
periodic in j with period N; for even k the functions
are symmetric about the middle of a period and for
odd k they are antisymmetric. McClellanand Parks (1972)
pointed out that this is a general property of the
eigenvectors of W.

An easy way to see this general property follows

from the fact that x = + 1, + i and

.6-

(2.6)




(wz)kj - sﬁ_j, K,j =0, 1,..., N-1 (2.7)

k

where 6N-j

(1.6).

is the Kroneker delta defined in equation

Thus we have:

W2 Col(ug,eee,uy) = + col(ug,e..,uy) (2.8)

where the sign is positive for ) = + 1 and negative for

A=+ i, From (2.7) it is clear that

u: = Uy - for A = + 1 and j = 1, N-1
uj = -uN_j for A = +i -9)
and
u, = 0 for A = + i
ol 2.10)
uysg = 0 for A = + i and N even (2.

We see from (2.1) that the order index k is

related to the eigenvalues: the functions (2,6) are

eigenvectors of W with eigenvalues




( 1 for k=0 (mod 4)

) -1 k=1 (mod 4)
U i k=2 (mod 4) Ehi

L i k=3 (mod 4)

In this paper we do not consider other functions

which satisfy (2.4), for example

u(j) = T sech[nN"%(j+mN)] (2.12)

Mm=ec0

(2.6) is a sequence of functions which are multi-

ples of the eigenvectors. Since there are infinitely
many functions in the sequence, clearly there are many
linear dependences. The functions in any infinite
sequence associated with a given eigenvalue of W must
also contain many linear dependences, since the
multiplicity of the eigenvalue is a bound on the number
of linearly independent eigenvectors associated with

that eigenvalue.

We notice that in the discrete case the property

(2,5) also holds true.




There is an interesting relation between the eigen-

vectors of W and a function which occurs in number theory:

the Legendre-Jacobi symbol is defined as:

1 when m z2 (mod N) # 0
when m z2 (mod N) # 0
when m = 0 (mod N)

where z is an integer (Erd&lyi et al., 1955, section 17,5),

It can be shown that

<%)e El(N) for N =

<]I§)e E_(r:) for N =

where E§N) is the vector space spanned by the eigenvectors

associated with the eigenvalue A.




3. Some general properties of the eigenvecto.s of W

We calculated the functions (2.6) to twenty
significant figures for N = 2, 3, ..., 30 and k = 0; 1,
-» 60. A number of interesting properties emer ged

from the calculations, which led to the following
general conclusions.
We consider the even vectors
k k }

{s * §

1 = 1 -
Jo U N-p) Jo T 0L B - 1Ny

and ﬁhe odd vectors

{6, -5

k ko
Yoo N3

jo = 1’000’%‘(N = 1 = NZ)
where N2 = N (mod 2) > 0. With these vectors we form the

following total systems of vectors (which are, however,

not minimal systems) in the spaces EiN):

N2 cos (2] jk/N) + a(a? + oK

(N)
o " ON-j,) € Eq

and

<% . . .k k (N)
N 51n(2n30k/N) *+ 5( dj + dN_jO)e Eti

0
These systems contain almost twice as many vectors as the
dimensionality of EiN); orthogonalizing these systems

scparately for each X it is possible to get a full system

of orthonormal eigenvectors of W,

-10-

(3.1)

(3.2)

(3.3)




-y

and with element j0 =1 from EE?? Then for any N,

N)

Consider the vectors with elements j0 = 0 from Efl

col(l + N%, d,vauyl) 2 EET)

and

col(0, a

- 1 1 N
1 ¥ N% ageenay g, gy 2 N e E»Ei)

where

(!k'

and

2 sin(27k/N)

We notice that n§N) =0 for A = i and N = 2, 3, and 4,
that n§N) = 1 for

1 and N =1, 2, 3;

i1and N=5,6, 7 8;

-1 and N

n
N
-
(73]
-
<=
-
(92}

-1 and N

=3, 4, 5, 6.

)=

(3.4)

(3.5)




Consequently the following are identities for the functions

(N) .
uy ),
Ugpe3(3) = 0 N=1,2,3, 4
P i = a - Nl N =2, 3
i glz(J)/uglz(O) = (1 - N9l N=2,3,4,5
N
(pll(J) 2 sin(27j/N) il B b B o
“gll(l) 2 sin(2n/N) + N S
and j = 1 (mod N)
NONT
Up+303) 2 sin(anj/N) N s e 7 g
uggls(l) 2 sin(2w/N) - N P AR
and j = 1 (mod N)

where p is a positive integer,

-12-




We also notice that a linear combination of eigen-

values always exists such that

O

1 1
a coll 1 .o (3.6
k=1 K~k ['1+xr?;' 1+AR;] ;

where A 1 for M =n" and k=0 (mod 4)

A

-1 for M = n~ and k=2 (mod 4)

and m* and n” are the number of positive and negative
eigenvalues respectively.
Since n{N) = 2 when A = 1 for N = 4, 5, 6, 7, and when
A =-1 for N=6, 7, 8, 9, a number a can be found for the
above combinations of A and N and for arbitrary linearly
independent uﬁN) and uéN), where k. =m =1 - X (mod 4) such | ;
that

uM Gy + auM ) ;

uﬁN)(O) + a uéNjkO) i 1 + AN

(3.7)

From (2.8) and (3.3) we have full bases in E(S):

«]3-




€3 ..
E{%)

5) .
E(3) -

£(5) .
b

where a, = 2%(3 - 5%)% +2(5 - 5%)%]

It is of interest to display a few of these results
explicitly:

a. For all integers P and for j = 1, 2, 3, 4:

o - 2
Z‘ e'TT(J Sm) /5 H2+4p[(j+5m) (2,”,/5)%]

M= =00

o 2
] e =0 H2+4p[5m(2n/5)%]

m=se=o




b. For all integers p and for j =1 and 2:

o . 2
z e-ﬂ(]+3m) /3 H2+4p[(j+3m)(2ﬂ/3)%]

mz;m 2 = 1 (3.9)
¥ L H2+4p[3m(2n/3)%] 1 - /3

m:-oo

c. For all integers p and for j = 1 and 2:

2 -n(i+3m)?/3 . .

Loe Hyp [(5+3m) (21/3)7)

m—;m 2 . 1 (3.10)
I 3™y, [3m(21/3)%] 1+ /3

4p

m=-o

4, Miscellaneous observations prompted by the numerical

calculations

We have not investigated the linear dependence of the
functions (2.6) beyond noticing that for N=2 through 8 the
eigenvectors corresponding to a given eigenvalue are not

only linearly dependent, but parallel or antiparallel; that is:

uM ) =+ B, ul) ) (4.1

It appears that in certain sets, €.g., k=3 (mod 4) for

«]15-




N =26 and 7, and for k = 1 (mod 4) for N = 4, eigen-
vectors with k prime tend to be antiparallel significantly
more often than those with k composite, much more than
the distribution of primes in the interval 0<k<60 would
suggest.

For primes modulo 8, with the single exception of
k=3 (mod 4), the eigenvectors with k=5 (mod 8) and k=7
(mod 8) are antiparallel to the vector for k=0 about four
times as frequently as the eigenvectors with k=1 or 3

(mod 8). In the exceptional case the 4:1 ratio is reversed.

5. Relationship to theta functions

Writing out the quadratic factor in (2.6), we have:

-1 2/N OZO o~ N -

M=ex

u () = e ™ [0 G o+ aN)) (5.1)

Comparison with the theta function

© 2. .
= t+ 2
es(z,t) & Z e m™m 1 le (502)

mE=o

(Bellman, 1961) shows that the eigenvectors (5.1) are a
generalization of these theta functions for the particular

arguments t = iN and z = wij. As such they may be of

mathematical interest.




6. Generating functions for the eigenfunctions

The generating functicn for the Hermite polynomials

(see, for example, Szegd, 1959). Carlitz has pointed out
(personal communication, 1970) that it follows from (2.6)

and (6.1) that the generating function for the eigenvectors

uﬁN)(j) is:

0 k +00

, .
ZO uk(j)éT =eZ ) exp{-n[(j+mN)-z/2N7n]Z/N}

mz_oo

which can be put in the form:

2
® k z
Lo uk@gr e ug(3-2/NTT)

7. Expansion of arbitrary vectors in_the eigenvectors of W

2
From the completeness of the functions e X /2 Hk(x) in
the interval (-», ») it follows that the system

{uk, k=0, + 1,...} is complete. Thus any arbitrary data




vector X can be expanded in terms of these eigenvectors:

N
X = ) a,u (7.1)
L k=1 k <k
where
a = X o oup (7.2)

Now take the finite Fourier transform of both sides of (1.10a):

N
K=wWygew ]

a, u, =
k=1 K ~k

e~

N
ay Wuy = kzl A 3k Yk (7.3)

k=1

where X is the finite Fourier transform of X. Now since
Ak =+ 1 and + i, we see that there is a remarkably simple
relation between a periodic function of a discrete variable
and its discrete finite Fourier transform: the expansion
coefficients of both in terms of the eigenvectors of W
have the same absolute value, and X and X differ only in the
sign and/or the realness of some of the terms in the expansion.
Thus there may exist for discrecte time series a canonical
form (with respect to the finite Fourier transform) in which
tue transformation can be done by inspection. It would
therefore be of interest to find efficient algorithms for

computing the eigenvectors (2.6) and the expansicn coefficients

]88«




(7.2); it would also be of practical importance to re-examine
digital data processing procedures for time series expressed
in this canoni:al form.

A similar statement can be made for the functions (2.3)

and the continuous-time Fourier transform (1.1)-(1.2).

=]19.
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